Tìm m để đồ thị hàm số y= (x+1) (2x^2-mx+1) cắt trục hoành tại ba điểm phân biệt Cho hàm số y=f (x) liên tục trên từng khoảng xác định và có bảng biến thiên như như hình vẽ tìm m để phương trình f (x)+m=0 có nhiều nghiệm thực nhất Đồ thị hàm số y = {x^3} + 1 và đồ thị hàm số y = {x^2} + x có tất cả bao nhiêu điểm chung Dạng 5: Tìm m nhằm hàm số đạt cực trị tại điểm x0 và trên kia là vấn đề cực lớn tuyệt rất tiểu Cách 1: Tìm điều kiện bắt buộc để hàm số đạt cực trị trên x0 : y' (x0) = 0Kiểm tra điều kiện đủ: Lập bảng xét lốt của y' xem có đúng với mức giá trị tìm được của tmê mẩn số thì hàm số bao gồm đạt cực trị trên xo hay không. a = m; b = -2 (m - 1); c = m - 3. - Như vậy, m = 0 thì pt (*) có nghiệm và với m ≠ 0 để phương trình (*) có nghiệm thì Δ≥0 ⇔ 4m + 4 ≥ 0 ⇔ m ≥ -1. ⇒ Kết luận: Phương trình (*) có nghiệm khi và chỉ khi m ≥ -1. * Bài tập 3: Chứng minh rằng phương trình x2 - 2 (m + 4)x + 2m + 6 = 0 luôn có nghiệm với mọi giá trị của m. (m +2) x 2 +6mx+4m+1= 0 17/ tìm m để phơng trình có hai nghiệm phân biệt.a. 2x 2 -6x+m+7= 0 b. 10x 2 +40x+m= 0 c. 2x 2 +mx-m 2 = 0 d. mx 2 -2( m-1)x+m+1= 0 e. mx 2 -6x+1= 0 f. m 2 x 2 -mx +2= 1 0 + + =g) 2 x ( 2 1)x 2 0+ =h) (x 1 )(x + 2) = 70 i) )1(31 32 2+=++xxxj) x(2x+3) 2 -4x 2 +9 =0 k) x3 8x 2 8x +1 =0 m) ( ) ( ) 02 1 2 122 1 2 =+++xx 3. Cho phng trỡnh x 2 + 2( m Cho phương trình (m+1)x^2+2(m+5)x+m+1=0 Tìm m để phương trình có ít nhất 1 nghiệm có giá trị tuyệt đối không lớn hơn 1. Tìm kiếm Everywhere Đề tài thảo luận This forum This thread Vay Tiền Trả Góp 24 Tháng. . . Đáp án và lời giải Đáp ánA Lời giảiLời giải Chọn A Ta có mx3−x2+2x−8m=0⇔x−2mx2+2m−1x+4m=0 Để phương trình ban đầu có ba nghiệm phân biệt lớn hơn 1 thì phương trình * có hai nghiệm phân biệt lớn hơn 1 và khác 2 . Phương trình có hai nghiệm phân biệt khác 2 khi⇔m≠0Δ>0f2≠0⇔m≠0−12m2−4m+1>04m+22m−1+4m≠0⇔m≠0−120x1−1x2−1>0 ⇔1−4mm>07m−1m>0⇔017m<0⇔170,\forall m\in\mathbb{R}\ nên phương trình luôn có hai nghiệm phân biệt với mọi $m$ Áp dụng định lý Viete \\left\{\begin{matrix} x_1+x_2=-2m-1\\ x_1x_2=-m+1\end{matrix}\right.\ a Pt có một nghiệm nhỏ hớn 1 và một nghiệm lớn hơn 1 khi và chỉ khi \x_1-1x_2-1 0\\ x_1+x_20\\ x_1+x_20\\ -2m-10\\ 2m+2>0\end{matrix}\right.\Leftrightarrow m> \frac{1}{3}\ Giải phương trình bậc 2 có chứa tham số m là dạng toán biện luận đòi hỏi kỹ năng bao quát tổng hợp, vì vậy mà dạng này gây khá nhiều bối rối cho rất nhiều làm sao để giải phương trình có chứa tham số m hay tìm m để phương trình có nghiệm thỏa điều kiện nào đó một cách đầy đủ và chính xác. Chúng ta cùng ôn lại một số nội dung lý thuyết và vận dụng giải các bài toán minh họa phương trình bậc 2 có chứa tham số để rèn kỹ năng giải dạng toán này. » Đừng bỏ lỡ Các dạng toán phương trình bậc 2 một ẩn cực hay ° Cách giải phương trình bậc 2 có chứa tham số m ¤ Nếu a = 0 thì tìm nghiệm của phương trình bậc nhất ¤ Nếu a ≠ 0 thì thực hiện các bước sau - Tính biệt số Δ - Xét các trường hợp của Δ nếu Δ có chứa tham số - Tìm nghiệm của phương trình theo tham số * Ví dụ 1 Giải và biện luận phương trình sau theo tham số m 3x2 - 2m + 1x + 3m - 5 = 0 * ° Lời giải - Bài toán có hệ số b chẵn nên thay vì tính Δ ta tính Δ'. Ta có Δ'= [-m + 1]2 – 3.3m – 5 = m + 12 – 9m +15 > 0 = m2 + 2m + 1 – 9m + 15 = m2 – 7m + 16 > 0 = m – 7/22 + 15/4 > 0 - Như vậy, Δ' > 0, ∀m ∈ R nên phương trình * luôn có 2 nghiệm phân biệt » Đừng bỏ lỡ Cách giải phương trình bậc 2 chứa ẩn dưới dấu căn cực hay * Ví dụ 2 Giải và biện luận phương trình sau theo tham số m mx2 - 2m - 2x + m - 3 = 0 * ° Lời giải • TH1 Nếu m = 0 thay vào * ta được • TH2 m ≠ 0 ta tính biệt số Δ' như sau - Nếu Phương trình * vô nghiệm - Nếu Phương trình * có nghiệm kép - Nếu Phương trình * có 2 nghiệm phân biệt ¤ Kết luận m > 4 Phương trình * vô nghiệm m = 0 Phương trình * có nghiệm đơn x = 3/4. m = 4 Phương trình * có nghiệm kép x = 1/2. m 0 - Có 2 nghiệm cùng dấu - Có 2 nghiệm trái dấu - Có 2 nghiệm dương x1, x2>0 - Có 2 nghiệm âm x1, x2 0 ⇔ [-m + 1]2 – 3.3m – 5 > 0 ⇔ m + 12 – 9m +15 > 0 ⇔ m2 + 2m + 1 – 9m + 15 > 0 ⇔ m2 – 7m + 16 > 0 ⇔ m – 7/22 + 15/4 > 0 ∀m ∈ R. ⇒ Phương trình 1 luôn có hai nghiệm phân biệt. Gọi hai nghiệm đó là x1; x2 khi đó theo định lý Vi–et ta có 1; và 2 - Theo bài toán yêu cầu PT có một nghiệm gấp ba nghiệm kia, giả sử x2 = khi đó thay vào 1 ta có Thay x1, x2 vào 2 ta được * TH1 Với m = 3, PT1 trở thành 3x2 – 8x + 4 = 0 có hai nghiệm x1 = 2/3 và x2 = 2 thỏa mãn điều kiện. * TH2 Với m = 7, PT1 trở thành 3x2 – 16x + 16 = 0 có hai nghiệm x1 = 4/3 và x2 = 4 thỏa mãn điều kiện. ⇒ Kết luận m = 3 thì pt có hai nghiệm là 2/3 và 2; m = 7 thì pt có hai nghiệm 4/3 và 4. • Điều kiện để phương trình có 2 nghiệm thỏa mãn điều kiện x1 - x2 = k với k ∈ R. Các bước làm như sau Bước 1 Bình phương 2 vế phương trình x1 - x22 = k2 ⇔ x1 + x22 - 4x1x2 = k2 Bước 2 Áp dụng Vi-ét tính x1 + x2 và thay vào biểu thức trên được kết quả. * Ví dụ cho phương trình x2 - 2m - 1x + m2 - 1 = 0 m là tham số. a Tìm điều kiện m để pt đã cho có 2 nghiệm phân biệt b Xác định giá trị của m để hai nghiệm của pt đã cho thỏa x1 - x22 = x1 - 3x2. ° Lời giải a Ta có - Phương trình có 2 nghiệm phân biệt khi chỉ khi b Phương trình có 2 nghiệm khi chỉ khi m x2 > α Thay biểu thức Vi-ét vào hệ để tìm m + Với bài toán Tìm m để phương trình có 2 nghiệm nhỏ hơn α x1 < x2 < α Thay biểu thức Vi-ét vào hệ để tìm m + Với bài toán Tìm m để phương trình có nghiệm sao cho x1 < α < x2 Thay biểu thức Vi-ét vào hệ để tìm m * Ví dụ Cho phương trình x2 -2m - 1x + 2m - 5 = 0 m là tham số a CMR phương trình luôn có 2 nghiệm phân biệt với mọi m b Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thỏa mãn x1 < 1 < x2. ° Lời giải a Ta có Vậy PT luôn có 2 nghiệm phân biệt với mọi m. b Theo Vi-ét ta có Theo yêu cầu bài toán thì x1 < 1 < x2 Thay * và ** ta được 2m - 5 - 2m - 2 + 1 < 0 ⇔ - 2 < 0 đúng với mọi m. ⇒ Kết luận Vậy với mọi m thì pt trên có 2 nghiệm x1, x2 thỏa x1 < 1 < vọng với bài viết về Cách giải phương trình bậc 2 chứa tham số m của Hay Học Hỏi ở trên giúp ích cho các em. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để ghi nhận và hỗ trợ, chúc các em học tốt.

tìm m để phương trình lớn hơn 0